MultiPalmSens4

multi-channel Potentiostat / Galvanostat / Impedance Analyzer

тм

Contents

MultiPalmSens4 Potentiostat / Galvanostat / Impedance Analyzer	2
MultiTrace: Software for Windows	4
Measurement Specifications	6
System Channel Specifications	7
EIS Contour Accuracy Plot	8
MultiPalmSens4 Accessories	9

MultiPalmSens4 Potentiostat / Galvanostat / Impedance Analyzer

The MultiPalmSens4 is a flexible multi-channel potentiostat, galvanostat and impedance analyzer which you can fully tailor to your requirements and budget.

Always a backup

Every channel of the MultiPalmSens4 is equipped with an internal storage of 8 GB. This means all your measurements¹ can automatically be saved on-board as backup. Measurements can be browsed and transferred to the PC easily using the MultiTrace software for Windows.

¹ Not supported: EIS, MultiStep and MixedMode

Available channel configurations

Each channel can be configured with the following options:

Potential range	Channel configuration:				
	MPS4.F#.05	-5 V to +5 V			
	MPS4.F#.10	-10 V to +10 V			
EIS configuration	Channel configuration:				
	MPS4.F0.##	NO EIS			
	MPS4.F1.##	100 kHz			
	MPS4.F2.##	1 MHz			
Optional	BiPot module				
Optional	IR Drop Compensation module				

For example, a single channel can have configuration

MPS4.F1.05 which means it will have max. 100 kHZ for EIS with \pm 5V potential range, or *MPS4.F2.10+BiPot* for max. 1 MHz EIS with \pm 10V and a BiPot module.

The MultiPalmSens4 can also be configured with galvanically isolated (floating) channels.

Potential Range (V) 10/ • 10/ • 10/ • 10/ • 10/ • 5/ • 5/ • 5/ • 10/ • 10/			• •	POWER	Mu	t, PalmS	ens4		•					
ALL CH3 CH4 CH5 <th c<="" colspan="2" th=""><th></th><th></th><th></th><th></th><th>00</th><th>0H5 0H6 • 🔘 • 🔘</th><th>047 OH (0) (0)</th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th>00</th> <th>0H5 0H6 • 🔘 • 🔘</th> <th>047 OH (0) (0)</th> <th></th> <th></th> <th></th> <th></th> <th></th>						00	0H5 0H6 • 🔘 • 🔘	047 OH (0) (0)					
Potential Range (V) 10V • 10V • 10V • 10V • 10V • 10V • 5V • 5V • 5V • 10V • 10V Max. freq. for EIS (H2) 1MHz • 100Hz ± 1MHz • 100Hz ± 1MHz •	Channels: - 8	+	•	İ	Ö Ö									
Max, freq, for EIS (Hz) 11HHz • 11HHz • 11HHz • 11HHz • 11HHz • 11HHz • 100HHz • 100HHz • 100HHz • 100HHz • 110HHz • 11HHz • 11HHz • 100HHz • 100HHz • 100HHz • 100HHz • 110HHz • 11HHz • 11HHz • 11HHz • 100HHz • 100HHz • 100HHz • 100HHz • 110HHz • 11HHz • 11HHz • 11HHz • 100HHz • 100HHz • 100HHz • 100HHz • 11HHz • 11HHz • 11HHz • 11HHz • 10HHz • 100HHz • 100Hz •		ALL	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	СН8				
	Potential Range (V)	10V ¥	10V ¥	10V ¥	10V ¥	10V ¥	10V ¥	5V ¥	5V ¥	5V 🔻	10/ *	10V *		
	Max. freq. for EIS (Hz)	1MHz •	1MHz 🔻	1MHz 🔻	1MHz 🔻	1MHz 🔻	1MHz 🔻	100kHz •	100kHz •	100kHz •	IMHz *	11042 *		
IR-compensation 🗹 🖉 🖉 🖉 🖉 🖉 🕼 🖬 🖬 🕼 🕼 🖉	BiPot	2	×		2			8				2		
	IR-compensation		×.		8	2	8	8		0	81	8		
Galvanically isolated 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉		2	1	1	2	10	2	8	1	8				
€ 27002 CONTRA	Galvanically isolated										-			

Supported Techniques

Voltammetric techniques

•	Linear Sweep Voltammetry	LSV
•	Differential Pulse Voltammetry	DPV
•	Square Wave Voltammetry	SWV
•	Normal Pulse Voltammetry	NPV
•	AC Voltammetry	ACV
•	(Fast) Cyclic Voltammetry	CV
Note	e: the above techniques can also be used for stripping v	oltammetry

Techniques as a function of time

:	ChronoAmperometry Pulsed Amperometric Detection Multiple Pulse Amperometric Detection Fast Amperometry	CA PAD MPAD FAMP
•	ChronoPotentiometry	CP
•	Open Circuit Potentiometry	OCP
•	Multistep Amperometry	MA
•	Multistep Potentiometry	MP
•	Mixed Mode	MM

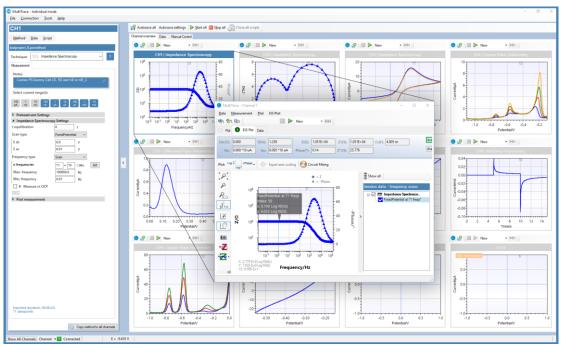
Electrochemical Impedance Spectroscopy (EIS) Impedance spectroscopy / EIS

- Frequency scan
- Potential scan
- Fixed potential

Next to the classic spectrum (frequency scan with fixed DC potential) a DC potential scan can be done at fixed frequency or a frequency scan at each potential of the potential scan.

Time scan

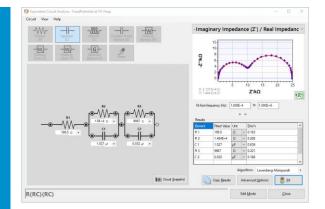
MultiTrace: Software for Windows

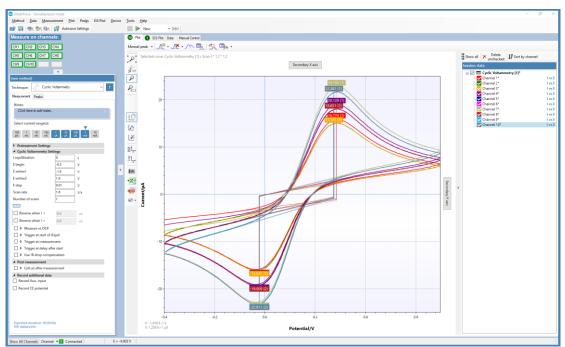


MultiTrace can run in two different modes:

- Individual Mode, where each channel can run a measurement or script independently from the other channels
- Simultaneous Mode, where all channels run the same measurement.

Individual Mode


The individual mode shows an overview of all channels. Each channel can be selected separately and can run a measurement independently in parallel with the other channels. You can also run a separate script on each channel or control peripherals like a multiplexer.


MultiTrace in Individual Mode with a plot window open for channel 1.

Other functions in MultiTrace 4

- Equivalent Circuit Fitting
- Scripting (on each channel)
- Open your data in Origin and Excel with one click of a button
- Save all available curves, measurement data and methods to a single file
- Browse measurements on MultiPalmSens4's internal storage
- Dynamic feedback on method parameters

Simultaneous Mode

In the Simultaneous Mode the MultiPalmSens4 works with all channels running the same measurement in parallel at the same time. There is only one active method in the Method Editor which is started on all channels simultaneously upon start. All results are presented as overlays in the same plot.

Combining instruments

MultiTrace also allows you to combine different multi-channel or single-channel potentiostats. Each single instrument can be assigned with a channel number and description. This allows you to extend your existing MultiPalmSens4 with a single-channel EmStat or PalmSens and let them work together as if they are one multi-channel device.

Integration with third party software:

- Excel
- Origin
- Matlab
- ZView

System requirements

Minimum PC requirements are:

- Windows Vista, 7, 8, or 10 (32-bit or 64-bit)
- GHz or faster 32-bit (x86) or 64-bit (x64) processor
- 1 GB RAM (32-bit) or 2 GB RAM (64-bit)

For more information about software visit www.palmsens.com/software

Measurement Specifications

General pretreatment:

Apply conditioning, deposition or initial potential for: 0 - 1600 s

General voltammetric parameters:

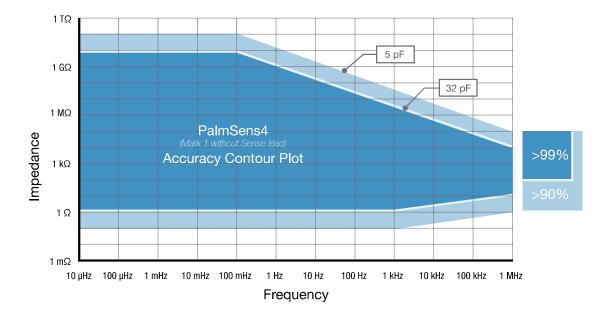
3	MPS4.F0.05 MPS4.F1.05 MPS4.F2.05	MPS4.F0.10 MPS4.F1.10 MPS4.F2.10
Potential range:	-5 V to +5 V	-10 V to +10 V
Step potential:	0.075 mV to 250 mV	0.075 mV to 250 mV
Pulse potential:	0.075 mV to 250 mV	0.075 mV to 250 mV

Limits of some technique specific parameters for PalmSens4:

Normal Pulse and Differential Pulse Voltammetry:		0.1 mV/s (75 µV step) to 100 mV/s (5 mV step) 10 ms to 300 ms
Square Wave Voltammetry ¹ and AC Voltammetry:	Frequency:	1 Hz to 2000 Hz ¹
Linear Sweep and Cyclic Voltammetry:	Scan rate:	0.01 mV/s (75 μV step) to 500 V/s (10 mV step)
Pulsed Amperometric Detection:	Pulse time:	50 ms to 300 s 1 ms to 1 s 640000 s (> 7 days at 10 s interval)
Multiple Pulse Amperometric Detection:		100 ms to 2 s 10 s to 100000 s 3
ChronoAmperometry, ChronoPotentiometry and Open Circuit Potentiometry:		0.25 ms to 300 s 1000000 s (> 10 days at 300 s interval)
Multistep Amperometry Multistep Potentiometry and Mixed Mode:	Interval time: Level switching overhead time: Number of levels: Number of cycles: Maximum run time:	1 to 255 1 to 2000
Fast Amperometry:	Maximum run time:	0.02 ms to 1 s 30 s 65000 (4000 for interval time < 0.2 ms)

Note: some limits of parameters are set for practical reasons and can be modified on request.

¹ MultiTrace provides the option to measure forward and reverse currents separately.



System Channel Specifications

Channel config	MPS4.F#.05	MPS4.F#.10
U U		
	-	±10 V
75 μ V ≤ 0.1% ±1 100 pA to 10 ≤ 0.1% at FS) mA (9 ranges) SR ¹	n 100 pA range)
±6 times app 0.005% of ap 75 μV at ±10 7.5 μV at ±1	blied current range oplied current range) V V)
	MPS4.F1.##	MPS4.F2.##
1 	кНz	10 µHz to 1 MHz o
> 1 TΩ // 10 1 MHz	pF	
+/- 4 kg 0 °C to + 50 external 12 V USB 8 GB per cha or +/- 800000	°C / AC/DC adapter annel 1 measurements incl. 1	
0-10 V, 12 b 5 V 5 V raw output o E-out ±10 V I-out ±6 V (1	it (1 kOhm output ir f current and poten (1 kOhm output imp kOhm output impe	tial pedance)
	± 10 V ± 30 mA (typi 150000 point 75 μV ≤ 0.1% ±1 100 pA to 10 ≤ 0.1% at FS 0.006% of ca 1 nA to 10 m ±6 times app 0.005% of al 75 μV at ±10 7.5 μV at ±10 μV at ±10 μV	±5 V ±10 V ±30 mA (typical) 150000 points/s 75 μV ≤ 0.1% ±1 mV offset 100 pA to 10 mA (9 ranges) ≤ 0.1% at FSR ¹ 0.006% of current range (5 fA of 1 nA to 10 mA (8 ranges)) ±6 times applied current range 0.005% of applied current range 0.005% of applied current range 0.005% of applied current range 75 μV at ±10 V 7.5 μV at ±10 V 7.5 μV at ±0.1 V Channel MPS4.F1.## config 10 μHz to 100 kHz 1 mV to 0.25 V rms, or 0.6 V p-1 > 1 TΩ // 10 pF 1 MHz 15 x 25 x 25 cm ³ +/-4 kg 0 °C to + 50 °C external 12 V AC/DC adapter USB 8 GB per channel or +/- 800000 measurements incl. r (assuming 200 data points per measured) ±10 V, 18 bit 0-10 V, 12 bit (1 kOhm output in 5 V

¹ FSR = at full scale range

EIS Contour Accuracy Plot

Note

The accuracy contour plot was determined under lab conditions and should be used for reference purposes. Please note that the true limits of an impedance measurement are influenced by all components in the system, e.g. cables, the environment, and the cell.

MultiPalmSens4 Accessories

The following accessories can be attached to any of the available channels of the MultiPalmSens instrument:

MUX8-R2 or MUX16 multiplexer

The MUX8-R2 is an 8 channel multiplexer. It allows the (Multi)PalmSens4 to measure up to 8 three-electrode cells or 8 sensors (2 or 3 electrode). In 8-WE mode it can measure up to eight working electrodes on sensor arrays with shared reference and counter electrodes.

The MUX16 is a 16 channel multiplexer. It allows the (Multi)PalmSens4 to measure up to 16 working electrodes with shared counter and reference electrodes.

Magnetic stirrer

The magnetic stirrer controlled by (Multi)PalmSens is ideal for stripping analysis applications. The stirrer is switched on during the conditioning and deposition stages by means of the Switchbox.

LM35 temperature sensor

This temperature sensor allows for monitoring of temperature during an experiment.

Two point calibration allows the user to precisely calibrate the sensor for the required temperature range. The calibration curve shows a linear slope of +10 mV/°C with 0.5°C Ensured Accuracy (at 25°C). It is rated for full 2°C to 150°C range. The sensor has low self-heating (0.08°C in still air).

Differential Electrometer Amplifier (DEA)

The PalmSens Differential Electrometer Amplifier (DEA) is a high impedance input amplifier. It can be used as a floating voltage amplifier with differential input and single output to the auxiliary port of PalmSens.

Default range is -10V to 10V (1x gain). Possible gains are: 2x, 5x, 10x, 20x, 50x, 100x, etc.

Please don't hesitate to contact PalmSens BV for more details: info@palmsens.com

PalmSens BV The Netherlands www.palmsens.com

DISCLAIMER

Changes in specifications and typing errors preserved. Every effort has been made to ensure the accuracy of this document. However, no rights can be claimed by the contents of this document.

